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The lack of first-principle's methods to directly reveal the processes of carrier transfers makes it challenging to understand the fundamentals of
electrochemical systems. By using the recently developed non-adiabatic molecular dynamics (NA-MD) and real-time time-dependent density
functional theory (rt-TDDFT), we illustrate the full profiles of hot carrier cooling in interfacial systems and explore the significance of non-adiabaticity
(NA) in reactions. The Schottky barriers and device design strategy could strongly suppress the back-transfer and enhance charge separation. By using
one step of CO2 reaction as an example, we find that conventional ground-state methods calculated reaction barriers could be underestimated.
Moreover, we are developing new methodologies to expand current NA-MD and TDDFT capability. By including many-body effects, exciton dynamics
in low-dimensional materials can be studied by first-principle. Molecular damage under solvent is also explored with wavefunction collapsing method.
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