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Designing a complete system to capture CO2 from the air and 
transform it into valuable chemicals is of utmost importance for 

mitigating climate change.  The processes of CO2 sequestration, CO2 transformation, and product 
separation all require significant energy inputs - therefore devising a system that simultaneously minimizes 
all of these steps is challenging.  To date, a variety of CO2 sequestration and/or conversion systems have 
been built targeting these individual aspects. Here we propose a new paradigm for designing CO2 capture 
and conversion systems: (i) formation of bicarbonates/carbonates through dissolution of CO2 into basic 
solutions; followed by (ii) electrochemical reduction; and (iii) transformation into valuable chemicals via 
industrial processes.  Unlike traditional systems in which gaseous CO2 reacts with a catalyst, our design 
focuses on the transformation of bicarbonate or carbonate ions from solution which offers several 
advantages.  First, the CO2 sequestration from the atmosphere does not require an energy intensive 
heating step to recover gaseous CO2 for later transformation, and 75% of the CO2 is removed on the first 
pass.  Second, by transforming bicarbonate/carbonate ions, the process avoids any energy intensive CO2 
compression and allows for significantly higher conversion percentages. Taken together, we anticipate 
significant reductions in overall energy consumption can be achieved by focusing attention on the 
conversion of carbonate/bicarbonate ions instead of gaseous CO2.
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Take Aways:
• The proposed process generates syngas for 0.7 kJ/mol CO2, which could then be used in a 

variety of industrial processes to generate valuable chemicals
• Generating syngas in our proposed method leads to an extremely pure syngas feed unlike 

industrial processes
• Generating syngas from coal and natural gas is more energy expensive than our proposed 

process, and the reported energies do not include the energy required to mine the coal 
or drill for the natural gas

• Our proposed processes would allow for 100% utilization of captured CO2
• Energy required by other pilot CO2 capture and conversion companies is higher than 

what we have proposed for a system that does both direct air capture and syngas 
synthesis

Comments on Calculations:
• All electrolyzers are assumed to perform the oxygen evolution reaction at the anode
• The total energies calculated would most likely be higher in a realistic plant due to the 

need for pumps, possible catalyst regeneration, etc.
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Take Aways:
• Releasing CO2 from the capture media and compressing CO2 for storage or for use by 

conversion processes is energy intensive
• Direct air capture is more difficult than point-source capture, and CO2 transformation 

is more energy intensive than CO2 capture
• Significant energy savings are possible when you do not have to compress the CO2 or 

release it from the capture material

Summary of Current CO2 Capture and Conversion Methods

Summary of Current CO2 Capture and Conversion Companies


