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A continuum model of multi-ion transport in a bipolar membrane (BPM) is developed and fit to experimental data. Specifically,
concentration profiles are determined for all ionic species, and the importance of a water dissociation catalyst is demonstrated. The model
describes internal concentration polarization and co- and counter-ion crossover in BPMs, determining the mode of transport for ions within
the BPM and revealing the significance of ion crossover when operated with pH gradients relevant to electrolysis. Finally, a sensitivity
analysis reveals that BPMs can be improved substantially by use of thinner dissociation catalysts, modulating the thickness of the BPM to
control salt ion crossover, and increasing the ion-exchange capacity of the ion-exchange layers in order to amplity the water dissociation

kinetics at the interface.

Results, Highlights, and Accomplishments
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Broad Impact

« Energy from renewable
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Conc. of ionic species defined
by catholyte composition.
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Potential of anodic reference electrode
is applied membrane voltage.

Partial Current Density Analysis
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* Model displays solid agreement for various applied pH gradients
over experimentally studied window of applied potentials.
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bipolar membrane, which
enables device operation in
environments most
conducive to efficient use of
affordable catalysts.
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 Salt-ion crossover current dominates at low applied potentials.
« Water dissociation current density takes off before 0.83 V.

Impact of Buffer Species
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Choice of buffer species affects measured open circuit potential.
Internal titration currents heavily impact measured current

densities at low potentials.

* Dominant mode of transport depends on supporting electrolyte.

* For highly alkaline or acidic electrolytes, dominant mode of
transport is migration.

* For near neutral electrolytes, the mode of transport is diffusion.

Dissociation Catalyst Sensitivity
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» Water dissociation catalyst is necessary to achieve high currents.
« Will need more effective, thinner catalyst layers for optimal
performance.
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