Understanding Multi-Ion Transport Mechanisms in Bipolar Membranes Justin C. Bui^{1,2}, Alexis T. Bell^{1,2}, and Adam Z. Weber²

¹Dept. of Chemical Engineering - University of California, Berkeley ²Joint Center for Artificial Photosynthesis - LBNL

Abstract:

A continuum model of multi-ion transport in a bipolar membrane (BPM) is developed and fit to experimental data. Specifically, concentration profiles are determined for all ionic species, and the importance of a water dissociation catalyst is demonstrated. The model describes internal concentration polarization and co- and counter-ion crossover in BPMs, determining the mode of transport for ions within the BPM and revealing the significance of ion crossover when operated with pH gradients relevant to electrolysis. Finally, a sensitivity analysis reveals that BPMs can be improved substantially by use of thinner dissociation catalysts, modulating the thickness of the BPM to control salt ion crossover, and increasing the ion-exchange capacity of the ion-exchange layers in order to amplify the water dissociation kinetics at the interface.

Introduction

Results, Highlights, and Accomplishments

Because BPMs can operate under pH gradients, they

a)

b)

Model Development and Boundary Conditions

Polarization Curve Fitting

enable favorable environments for catalysis at the individual electrodes for water splitting or CO₂RR. Transport in BPMs is poorly understood, and mitigating salt-ion crossover is vital to implementation in electrolyzers.

The continuum model developed in this study captures water dissociation and crossover over a range of applied pH gradients relevant to various electrosynthesis reactions. The continuum model will inform the future design of bipolar membranes and water dissociation catalysts.

Broad Impact

Model displays solid agreement for various applied pH gradients over experimentally studied window of applied potentials.

- Energy from renewable sources has become substantially less expensive and more prevalent. We can harness this energy to convert **affordable feeds** (water, air, CO₂) into valueadded chemicals and materials.
- Many devices are limited by expensive catalysts or exhibit other inefficiencies.
- To reduce inefficiencies and lower cost, we can use a **bipolar membrane**, which enables device operation in environments most conducive to efficient use of affordable catalysts. We **simulate** a BPM to
 - optimize its performance for a variety of different

Partial Current Density Analysis

Ion Transport Mechanisms

- Salt-ion crossover current dominates at low applied potentials.
- Water dissociation current density takes off **before 0.83 V**.

- Dominant mode of transport depends on supporting electrolyte.
- For highly alkaline or acidic electrolytes, dominant mode of transport is migration.
- For near neutral electrolytes, the mode of transport is diffusion.

chemistries.

Acknowledgments

This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. JCB also acknowledges funding from the National Institutes of Health under Grant No. S100D023532 and the Science Foundation National Graduate Research Fellowship under Grant No. DGE 1752814 .

- Choice of buffer species affects measured open circuit potential. Internal titration currents heavily impact measured current densities at low potentials.
- Water **dissociation catalyst is necessary** to achieve high currents.
- Will need more effective, thinner catalyst layers for optimal performance.

